Sampur Power Plant

A second coal power plant was proposed as a joint venture of Ceylon Electricity Board and National Thermal Power Corporation (NTPC) of India. The Joint Venture Company has been incorporated as Trincomalee Power Company Limited on 6th September 2011. Trincomalee Power Company Limited was expected to be responsible for the implementation and operation of the 2 X 250MW coal power plant in Sampur. The total estimated cost of the project was projected to be USD 512 Million.

The power generated will be transmitted to the national grid through high voltage transmission lines from Sampur through Habarana to the Veyangoda Grid Substations. A Power Purchase Agreement, Implementation Agreement, BOI Agreement, Land Lease Agreement, and Coal Supply Agreement were signed on 07 October 2013 by the Government of Sri Lanka, Ceylon Electricity Board, and JV Company. The project was expected to be commissioned before the end of 2017. However, due to flaws in its EIA in preventing environmental pollution, and objections from the public, the government decided to cease plans. This project though may be revived by a future government.

Assumptions and generalisations regarding wind and air pollution in the EIA.

Left: The ‘Windrose’ is a representation of which direction the wind comes from for December 2012 to February 2013. The distribution of wind speeds from each direction is shown in colour – Courtesy: Sampur EIA from Mantec.

Nitrous oxide pollution for Dec-Feb period as estimated by Mantec: The contours shows the peak concentration of nitrous oxides for a day due to the emissions. We inset an arrow to show the South-Easterly wind direction that the wind comes from according to the EIA. Notice, the contours with higher concentration is drawn towards the South-East – Source: Mantec EIA Report.

There are other causes for concern. Mantec has made the following inter-locking assumptions and generalisations:

(a) The wind measurements in Sampur represents the wind across the East: A better accounting of regional variation in wind is needed. There are variations due to location, storms, mountains and sea breeze. The sea-breeze and the desiccating mountain slope winds (“kachchan kaththa” in Tamil) that affects Sampur in a particular way. 

(b) Wind observations at Sampur can be extrapolated to higher elevations: The CEB instrument does not reach the high elevations that the pollutants travel to. It is hard to capture the wind profile at higher elevations without observations. The assumptions in the software about the upper air should have been verified for our specific equatorial geography. 

(c) One year of wind observations is enough: The wind varies substantially from year to year variation of wind in Sri Lanka. For example, in some years there are storms and even cyclones. In other years, the El Nino alters the wind flow. One just cannot use just one year of data to project for the next half century if serious. 

(d) The past can represent the future: With decadal and climate change (which we have documented for Sri Lanka), one cannot assume that the past represents the future. The EIA does not address the risks posed by climate change such as more frequent intense rainfall, cyclones, sea level rise or changing wind and storm patterns all of it of relevance for Trincomalee. 

These shortcomings could have been mitigated by making use of all available data, consulting past research, addressing inconsistencies and communicating what risks this analysis has not addressed.